American Carbon Registry®
Methodology for GHG Emission
Reductions through
Truck Stop Electrification

Version 1.0
August 2011
TABLE OF CONTENTS

1. BACKGROUND AND APPLICABILITY .. 3
 1.1 BACKGROUND ON TRUCK STOP ELECTRIFICATION .. 3
 1.2 METHODOLOGY OBJECTIVES ... 4
 1.3 APPLICABILITY CONDITIONS .. 4
 1.4 DEFINITIONS AND ACRONYMS ... 5
 1.5 PERIODIC REVIEWS AND REVISIONS ... 5

2. PROJECT BOUNDARIES ... 7
 2.1 PHYSICAL BOUNDARY ... 7
 2.2 TEMPORAL BOUNDARY ... 7
 2.3 GHG ASSESSMENT BOUNDARY ... 7
 Table 1. Emission Sources included in the GHG Assessment Boundary... 8

3. BASELINE SCENARIO AND ADDITIONALITY .. 9
 3.1 BASELINE DESCRIPTION ... 9
 3.2 ADDITIONALITY ASSESSMENT .. 9
 Table 2. Estimates of TSE-equipped versus total heavy-duty truck parking spaces (nationwide)....................... 11

4. QUANTIFICATION OF BASELINE AND PROJECT EMISSIONS .. 13
 4.1 ACTIVITY DATA .. 13
 4.2 BASELINE EMISSIONS .. 13
 Table 3. High, Low, and Average CO₂ Emissions and Fuel Consumption Rates for Class 8 Trucks (Han Lim 2002) .. 14
 4.3 PROJECT EMISSIONS ... 17
 4.4 LEAKAGE .. 19
 4.5 EMISSION REDUCTIONS .. 19
 4.6 UNCERTAINTY .. 19
 Table 4. Uncertainties and Mitigation Procedures ... 21
 4.7 CALCULATION OF ERTs .. 24

5. DATA COLLECTION AND MONITORING ... 25
 5.1 MONITORING PLAN GUIDELINES ... 25
 5.2 DATA MEASUREMENTS .. 25
 Table 5. Parameters for Monitoring and Emission Reduction Calculations ... 26
 5.3 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) MEASURES ... 27
 5.4 VALIDATION AND VERIFICATION INTERVAL .. 28

6. EMISSIONS OWNERSHIP AND QUALITY .. 29
 6.1 REAL ... 29
 6.2 SURPLUS ... 29
 6.3 UNIQUE .. 29
Methodology for GHG Emission Reductions through Truck Stop Electrification

6.4 PERMANENT .. 30
6.5 VERIFIABLE .. 30
6.6 DIRECT EMISSION REDUCTIONS ... 30
6.7 OWNERSHIP OF GHG REDUCTIONS .. 30
6.8 COMMUNITY AND ENVIRONMENTAL IMPACTS ... 31
6.9 WARRANTIES ... 32
6.10 ANNUAL ATTESTATIONS ... 32

APPENDIX A: WORKED EXAMPLE FOR BASELINE AND PROJECT EMISSIONS .. 33
APPENDIX B: EGRID SUBREGIONS AND NERC REGIONS ... 36
1. **BACKGROUND AND APPLICABILITY**

1.1 **Background on Truck Stop Electrification**

Approximately 680,000 long-haul trucks\(^1\) stop for extended periods (e.g. overnight) at truck stops and other locations during layover (rest) periods that are mandated by the U.S. Department of Transportation\(^2\). During this time, drivers will idle their engines to maintain a comfortable temperature in their cab compartments and to provide power to devices such as televisions, refrigerators, laptops, and microwaves. Extended engine idling results in the consumption of large amounts of diesel fuel and the release of greenhouse gases (GHGs), as well as other local air pollutants which are hazardous to human health. According to the U.S. Environmental Protection Agency (USEPA), freight trucks contribute approximately 21 percent of all GHG emissions in the transportation sector.\(^3\) Currently only a small percentage of drivers utilize anti-idling technologies to prevent extended idling, and the intent of this methodology is to create immediate incentives and sources of revenues to fund this critical technology transition.

Installation of truck stop electrification (TSE) technologies is an idling reduction solution that is implemented at locations where extended idling occurs. These technologies allow a driver to shut down the main propulsion engine of the diesel truck, eliminating all of the emissions associated with diesel engine idling. The type of TSE system eligible under this methodology draws power from the electric grid in order to provide heating, air conditioning, and electric power for in-cab devices. Even after adjusting for the emissions from electricity generation (i.e. the with-project emissions), TSE systems can deliver a 90% reduction when compared to the CO\(_2\) produced from an idling engine. General industry acceptance is that a Class 8 diesel truck burns around 1 gallon of fuel for each hour of idling. Further studies have shown that while this is the case on average, actual fuel consumption rates vary greatly depending upon engine model, size, and the throttle level (RPM) set during idling. For this reason, a temperature-sensitive model has been developed that accounts for the differing levels of engine RPM that would be necessary to maintain a comfortable cab temperature, in the absence of idle reduction technology, based on average monthly temperatures at the TSE location.

To this point, expansion of TSE locations has been limited. At the time of publication of this methodology, a total of 40 TSE stations in 17 states are listed by the US Department of Energy.\(^4\) This equates to only 1,884 TSE-equipped spaces out of an estimated 500,000 available spaces in the U.S. (see Table 2 for additional details of truck parking estimates). One of the major roadblocks to current TSE technology expansion is the upfront capital costs required to install the infrastructure-based

\(^1\) Figure based on US Census Bureau. 2002 Economic Census: Vehicle Inventory and Use Survey-- Geographic Area Series-- United States: 2002; EC02TV-US; U.S. Census Bureau: Washington, DC, December 2004.

\(^2\) Federal Highway Administration Hours of Service ("HOS") regulations limit drivers to 11 hours of drive time following 10 consecutive hours of rest. See http://www.fmcsa.dot.gov/rules-regulations/topics/hos/index.htm.

\(^4\) www.afdc.energy.gov/afdc/progs/tse_listings.php
technology. It is expected that the ability to generate and claim tradable carbon credits would strongly impact TSE financing options, paving the way for a more efficient, sustainable freight industry.

1.2 Methodology Objectives

This American Carbon Registry (ACR) methodology addresses boundary definition, baseline determination, additionality, quantification of baseline and with-project GHG emissions, leakage, uncertainty, data collection and monitoring requirements, quality assurance/quality control, ownership of emission reductions, and permanence for a Truck Stop Electrification offset project.

The methodology is designed to provide the necessary guidance for a TSE Project Proponent to submit to ACR a GHG Project Plan that provides a complete description of the TSE project, and a true and fair representation of the project’s net GHG emission reductions, sufficient for ACR to certify the GHG Project Plan, for successful third-party validation and verification of the project, and ultimately for project registration and issuance of Emission Reduction Tons (ERTs).

TSE projects must meet the following criteria:

- The project must result in a reduction of direct emissions through identifiable actions by the Project Proponent (provision of TSE services that results in a clear and measurable reduction in diesel engine idling hours);
- Project boundaries must be clearly defined, including geographic, temporal, and the GHG assessment boundary;
- Emission reductions must be surplus to any reductions effectively required by existing enforced regulations, and additional to business-as-usual as demonstrated through application of a common practice-based performance standard;
- Both baseline (diesel engine idling) and with-project (electricity consumption) emissions must be rigorously defined and quantified using accepted, transparent, and replicable measurement and calculation tools and techniques. Raw data must be available to verify measurements and calculations, and supporting documentation, calibration records, and other data quality information provided to support the level of certainty/significance of the data;
- Ownership of GHG emission reductions must be clearly demonstrable by contract or written agreement. Owners of the relevant facilities, the entities paying the operational costs of the facility, and the entities that paid for the initial and the ongoing costs of the emission reduction action must be identified;
- Issues of uncertainty, permanence, and leakage must be addressed and where necessary quantified and deducted from net GHG emission reductions;
- Community and environmental impacts must be net positive as defined in the ACR Standard, with the option of further certifications of environmental, social and sustainable development benefits.

1.3 Applicability Conditions

In order to use this methodology a TSE project must meet all of the following conditions:
• The methodology is applicable to installation and use of single-system electrification technologies, and excludes dual-system electrification and on board anti-idling equipment such as cab or bunk heaters, coolant heaters, and auxiliary power units.

• The TSE system must use grid-connected electrical power, and must operate with the truck’s main propulsion (diesel) engine fully shut off. This methodology does not account for with-project emissions from the truck, only those from generation of electricity powering the TSE system.

• The methodology is not applicable to projects using electrified parking spaces for vehicles other than long-haul diesel engine trucks.

• The methodology is currently only applicable in the United States due to its use of U.S.-specific references and emission factors (e.g. for electric power emissions). Future versions may expand applicability outside the U.S.

1.4 Definitions and Acronyms

All definitions in the latest version of the ACR Standard apply. This methodology uses the following additional terms:

ASOS Automated Surface Observing Systems maintained by the Federal Aviation Administration

eGRID USEPA’s Emissions & Generation Resource Integrated Database

EGC Electricity Generating Company (used in eGRID)

kWh kilowatt hours

MADIS Meteorological Assimilation Data Ingest System managed by the National Oceanic and Atmospheric Administration

NERC North American Electric Reliability Corporation

PWS Personal Weather Stations

RPM Revolutions per minute

SIP State Implementation Plan

TSE Truck Stop Electrification

USDOT U.S. Department of Transportation

USEPA U.S. Environmental Protection Agency

1.5 Periodic Reviews and Revisions

ACR may require revisions to this methodology to ensure that monitoring, reporting, and verification systems adequately reflect changes in the project’s activities. This methodology may also be
periodically updated to reflect regulatory changes, common practice adoption rates, emission factor revisions, or expanded applicability criteria including new models of eligible TSE technologies. Before beginning a project, the Project Proponent should ensure that they are using the latest approved version of this methodology.

Once a GHG Project Plan is certified, using the latest approved version of this methodology, that GHG Project Plan remains valid for the duration of the project Crediting Period regardless of methodology updates.

An Annual Attestation by the Project Proponent is required. Validation is required once per Crediting Period, and verification is required prior to any new issuance of ERTs, as described in the ACR Standard. ACR will review Annual Attestations and periodic verification statements and notify the Project Proponent of any required adjustments or corrections to these documents. Once a GHG Project Plan has been certified by ACR, the project may be listed. Once ACR has accepted a verification statement, ACR will register verified emission reductions as ERTs.
2. **PROJECT BOUNDARIES**

ACR defines the GHG offset project boundary to include a project’s geographical implementation area, project duration, and the GHG assessment boundary (i.e. GHG sources and sinks included).

2.1 **Physical Boundary**

The project boundaries will be confined to all TSE units installed by a single Project Proponent in a continuous time frame or in contiguous phases. A single TSE project may include multiple TSE facilities, each with multiple TSE units (parking spaces), provided the included facilities are clearly described in the GHG Project Plan.

The project implementation, key project data collection and storage, calculation of the project emissions, and total emission reductions will be centrally managed and stored by the Project Proponent. The project boundaries will be the universe of installations undertaken by the Project Proponent within a timeframe specified in the GHG Project Plan.

2.2 **Temporal Boundary**

Per the *ACR Standard*, the project Start Date is the date on which the project began to reduce GHG emissions against its baseline. For TSE projects, the Start Date corresponds to each TSE facility’s first operating hour. The earliest eligible Start Date for this project type is January 1, 2000.

Per the *ACR Standard*, the project Crediting Period is the finite length of time for which a GHG Project Plan is valid, and during which a project can generate offsets against its baseline scenario. TSE projects using this methodology will have a Crediting Period of ten (10) years. Crediting Periods may be renewed by re-submitting the GHG Project Plan in compliance with then-current ACR standards and criteria; re-evaluating the project baseline; demonstrating additionality; using ACR-approved baseline methods, emission factors, tools and methodologies in effect at the time of Crediting Period renewal; and undergoing validation and verification, as required.

2.3 **GHG Assessment Boundary**

The GHG assessment boundary encompasses all primary effects and significant secondary effects associated with the project. The GHG assessment boundary is used to identify the GHG emission sources and sinks that must be examined to quantify a project’s GHG reductions, as well as sources and sinks that may be excluded from accounting either because they insignificant or because exclusion is conservative (i.e. will lead to an underestimate of net GHG reductions). While crediting is only for direct emission reductions/removals from sources owned or controlled by the Project Proponent, the project’s significant GHG effects are examined regardless of whether they occur near the project, and regardless of whether they occur at GHG sources and sinks owned or controlled by the Project Proponent.

For TSE projects the primary direct effect is the reduction of GHG emissions from idling of diesel engines. Significant secondary effects (indirect emissions) involve the consumption of on-site electricity and the resulting emissions that occur off-site in the generation of this electricity. The emissions from
on-site idle reduction and the emissions from off-site electricity generation are the two emission sources included in this project assessment boundary. Emissions from manufacture and installation of TSE facilities are excluded as insignificant relative to the project’s net GHG reductions over the project lifetime.

Baseline emissions from diesel engine idling are quantified using emission factors derived from USEPA publications, as described in section 4.2. Project emissions from electricity consumption by TSE systems are quantified using USEPA Emissions & Generation Resource Integrated Database (eGRID) emission factors, as described in section 4.3.

The sources and sinks included in and excluded from the project GHG assessment boundary are shown in Table 1.

Table 1. Emission Sources included in the GHG Assessment Boundary

<table>
<thead>
<tr>
<th>Gas</th>
<th>Included / Excluded</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>Included</td>
<td>CO₂ is the major GHG emitted from diesel fuel combustion.</td>
</tr>
<tr>
<td>CH₄</td>
<td>Excluded</td>
<td>While there are minor methane emissions from diesel fuel combustion, no credit will be claimed for this reduction in order to ensure that the project emission reduction claims are conservative.</td>
</tr>
<tr>
<td>N₂O</td>
<td>Excluded</td>
<td>While there are minor nitrous oxide emissions from diesel fuel combustion, no credit will be claimed for this reduction in order to ensure that the project emission reduction claims are conservative.</td>
</tr>
<tr>
<td>Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>Included</td>
<td>CO₂ is the major GHG emitted from electricity generation.</td>
</tr>
<tr>
<td>CH₄</td>
<td>Excluded</td>
<td>Methane represents a relatively small source of emissions from electric power generation, in CO₂ equivalent terms, based on eGRID data.</td>
</tr>
<tr>
<td>N₂O</td>
<td>Excluded</td>
<td>Nitrous oxide represents a relatively small source of emissions from electric power generation, in CO₂ equivalent terms, based on eGRID data.</td>
</tr>
</tbody>
</table>
3. **BASELINE SCENARIO AND ADDITIONality**

3.1 Baseline Description

Per the ACR Standard, the GHG project baseline is a counterfactual scenario that forecasts the likely stream of emissions or removals to occur if the Project Proponent does not implement the project, i.e., the "business as usual" case.

There are various potential approaches to baseline determination, including existing actual or historical emissions; the emissions from a technology or practice that represents an economically attractive course of action, taking into account barriers to investment ("project-specific" baseline approach); or the average emissions of similar project activities undertaken in a recent period in similar social, economic, environmental and technological circumstances, and whose performance is among the top specified percentage of their category.

In this methodology the baseline is defined by existing actual or historical emissions, i.e. the continued engine idling of long-haul trucks during extended periods of rest at rates typical of prevailing practice in the industry. In the absence of the project activity, the methodology assumes drivers will idle their engines to deliver heating and cooling to the cab and provide power for on-board accessories, which requires operation of the main propulsion engine. The overwhelming majority of trucks are not equipped with a climate control system that can be operated without using the main propulsion engine.

The typical long-haul driver is away from home approximately 306 days a year. When away from home, the long-haul driver rests in the truck, for periods that average from 8 to 12 hours per day during the week and 12-17 hours per day on weekends. During most of these resting hours the engine is idled to provide the amenities necessary for a comfortable resting environment. Factors that influence the rate of idling include seasonal climate variation, industry structure, driver habits, company policy, etc. During periods of temperature extremes (summer and winter) drivers will idle their engines throughout the entire resting period to provide a comfortable in-cab temperature. During more moderate weather, drivers may elect to idle the engine or shut it down periodically for fuel savings.

3.2 Additionality Assessment

Emission reductions from the TSE project must be additional, or deemed not to occur in the business-as-usual scenario. Assessment of the additionality of a project will be made based on passing two tests:

1. Regulatory Surplus Test, and
2. Practice-based Performance Standard

These two tests require the Project Proponent to demonstrate that the TSE project activity is surplus to regulations, i.e. the emission reductions achieved by idling reduction are not effectively required by any regulatory surplus test.

5 Based on a proprietary study by IdleAire Technologies Corporation, a survey of fleets with a total of more than 300,000 trucks indicated long-haul drivers were away from home on average 306 days per year and idling 11 hours per day during extended resting periods.
applicable enforced regulation; and that the TSE project activity reduces emissions below the level established, through the practice-based performance standard as defined below, to represent common practice for the long-haul trucking industry in the United States.

TEST 1: Regulatory Surplus

In order to pass the regulatory surplus test, the GHG emission reductions achieved by the project must not be effectively mandated by existing and enforced laws, regulations, statutes, legal rulings, or other regulatory frameworks in effect as of the project Start Date.

The Project Proponent must demonstrate in the GHG Project Plan that there is no existing enforced regulation (federal, state or local) that mandates the project or effectively requires the GHG emission reductions associated with anti-idling technologies. While several states and municipalities have anti-idling regulations, many of these exempt the long-haul trucks that TSE systems serve. For those areas in which anti-idling regulations do apply to travel centers in which the TSE systems are installed, those systems and associated GHG emissions must be excluded from the project, unless the Project Proponent presents evidence suitable to the validator/verifier that anti-idling regulations are routinely not enforced.

The Project Proponent should consult the latest version of the *Idling Regulations Compendium* maintained by the American Transportation Research Institute as a reference for anti-idling regulations.

TEST 2: Practice-Based Performance Standard

GHG performance standards take various forms, including practice-based, technology tests, and emission rate benchmarks. Practice-based performance standards have generally been developed by evaluating the penetration rates of a particular technology or practice within a relevant industry, sector or region. If these levels are sufficiently low that it is concluded the project activity is not common practice, and it is surplus to enforced regulations, then the project activity is deemed additional.

Since technology adoption rates change over time, this approach requires that the practice-based performance standard be updated at appropriate intervals by re-examining data on penetration rates, so that a GHG program does not continue crediting a project activity that over time has become essentially business-as-usual.

6 See http://www.atri-online.org/ and download the *Idling Regulations Compendium*. This compendium is continually updated by ATRI; the latest update must be used.

7 See for example the U.S. Environmental Protection Agency Climate Leaders offset module overview and methodologies at http://www.epa.gov/stateply/resources/optional-module.html; “Offset projects are required to achieve a level of performance with respect to emission reductions and/or removals that is significantly better than business-as-usual. EPA determines a performance threshold for addionality specific to each project type, by examining data sets of similar, recently undertaken or planned practices, activities or facilities in the same geographic region. This level of performance is presented in the form of an emissions rate, a technology standard, or a practice standard, as selected by EPA based on the characteristics of the data examined... The performance standard approach minimizes the risk of accepting a project that is not additional or rejecting a project that is additional. A performance standard approach also reduces the complexity, cost, and subjectivity of constructing individual project-specific reviews.”
This practice-based performance standard compares the number of heavy-duty truck parking spaces with TSE technology installed to the estimated total number of truck parking spaces, to derive a common practice (business-as-usual) market penetration rate of TSE technologies.

According to the USDOE TSE Site Locator\(^8\), 40 truck stop locations, with 1,884 individual spaces, are equipped with TSE technology at the time of methodology drafting.

A 2002 *Study of Adequacy of Commercial Truck Parking Facilities*, completed by the Federal Highway Administration,\(^9\) estimates a total of 3,382 commercial truck stop and travel plaza facilities along interstates, with an estimated total of 284,601 parking spaces, in addition to 1,771 public rest area facilities along interstates, with an estimated total of 31,249 parking spaces.

The same study estimates an annual growth rate of 6.5% for parking spaces at commercial facilities and 5.1% for truck parking spaces at public rest areas. Applying these projected growth rates through 2010 would yield an estimate of 471,013 parking spaces at commercial facilities and 46,522 parking spaces at public facilities by 2010. However these growth rates are likely to be overestimated, considering downturns in the economy since the study was published in 2002.

Simply dividing the number of heavy-duty truck parking spaces currently equipped with TSE technology (1,884) by the estimated total number of parking spaces in 2002 (315,850) yields a penetration rate estimate for TSE technologies of 0.6%. This would be the proportion if there had been no growth in heavy-duty truck parking spaces since 2002. Accounting for growth since 2002, even if the actual growth rates have been less than the 6.5% and 5.1% projected by the Federal Highway Administration, would only decrease the estimated percentage penetration rate of TSE-equipped spaces.

Data for calculation of the performance standard is shown in Table 2.

Table 2. Estimates of TSE-equipped versus total heavy-duty truck parking spaces (nationwide)

<table>
<thead>
<tr>
<th>Locations</th>
<th>Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSE-equipped, based on USDOE TSE Site Locator</td>
<td>40</td>
</tr>
<tr>
<td>Total commercial facilities as of 2002, based on FHA Study of Adequacy of Commercial Truck Parking Facilities</td>
<td>3,382</td>
</tr>
<tr>
<td>Total public facilities as of 2002, based on FHA study</td>
<td>1,771</td>
</tr>
<tr>
<td>Total commercial + public as of 2002</td>
<td>5,153</td>
</tr>
<tr>
<td>Conservative estimate of TSE penetration (today’s TSE-equipped spaces divided by 2002 totals)</td>
<td></td>
</tr>
<tr>
<td>Total estimated commercial facilities in 2010, based on</td>
<td></td>
</tr>
</tbody>
</table>

We conclude that the common practice (business-as-usual) market penetration rate of TSE technologies is between 0.4% and 0.6%; conservatively, at most 0.6% if we assume no growth in total commercial and public facilities since 2002.

This indicates that the installation of TSE technologies at unregulated travel centers is not common practice. Therefore TSE projects meeting the applicability conditions of this methodology are deemed “beyond business-as-usual” and thus additional, provided they pass the Regulatory Surplus test. Project Proponents must show that the project is surplus to enforced regulations, but need not document financial, institutional, or technological implementation barriers.

Projects that are certified under this version of the methodology need not reassess additionality during the Crediting Period. However, since additional TSE installations will increase the calculated percentage above, the practice-based performance standard must be reassessed periodically after significant changes to the market, or at a minimum every 10 years, to re-evaluate the penetration rate of TSE installations at unregulated travel centers.

ACR reserves the right to review the common practice assessment as necessary to ensure additionality of future projects. All new GHG Project Plans, and all applications for Crediting Period renewal on existing projects, shall apply the regulatory surplus and practice-based performance standard tests in the latest approved revision of this methodology in effect at the time of GHG Project Plan submission or application for Crediting Period renewal.

<table>
<thead>
<tr>
<th>6.5% annual growth rategado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total estimated public facilities in 2010, based on 5.1% annual growth rate</td>
</tr>
<tr>
<td>Total commercial + public, 2010 estimate</td>
</tr>
<tr>
<td>Estimate of TSE penetration (today’s TSE-equipped spaces divided by 2002 totals projected forward to 2010 at FHA-estimated annual growth rates)</td>
</tr>
</tbody>
</table>
4. QUANTIFICATION OF BASELINE AND PROJECT EMISSIONS

Please see Appendix A for a worked example of the baseline, project, and net GHG reductions calculations in this chapter.

4.1 Activity Data

The quantification of baseline and project emissions using emission factors depends on reliable and complete measurement of activity data – in this case the usage of TSE systems by participating long-haul truckers. The Project Proponent must describe in the GHG Project Plan a system for accurately monitoring, recording, and storing data on customer usage of the TSE systems included in the project boundary, thereby validating hours of usage by location for emission reduction calculations.

An acceptable system is one that monitors electric power usage on a site-by-site basis, with power meters providing a record of power consumption by hour. This allows the calculation of both hours of diesel engine idling avoided (for calculation of baseline emissions) and kilowatt hours (kWh) of electricity consumed (for calculation of project emissions).

If on-site power meter records are not available, for example in the early stages of project implementation, utility receipts may be used. In these instances, electric power consumption from the utility receipt should be pro-rated into the appropriate calendar periods to match the time frame of the accumulated TSE usage hours.

Activity data will be spot-checked by the verifier.

4.2 Baseline Emissions

4.2.1 Emission Factors

A 2004 EPA study concludes that during an hour of idling, a heavy-duty diesel engine consumes between 0.4 and 1.65 gallons of diesel fuel and releases anywhere between 4,000 and 16,000 grams of CO₂. The EPA study, along with other studies, shows that fuel consumption and resulting emissions are most directly affected by engine RPM settings. For this reason, this methodology uses a temperature-adjusted emissions model that accounts for the differing levels of engine RPM that would be necessary to maintain a comfortable cab temperature, in the absence of idle reduction technology, based upon monthly average temperature at the TSE location. This model is applied to the actual hours of TSE system usage at a site to derive baseline CO₂ emissions.
The baseline emission factors used in this methodology are derived from an October 2002 EPA publication.10 In this two-year study, 42 tests were conducted on nine Class-8 trucks of various model years. The study concludes that:

- During an hour of idling, a heavy-duty diesel engine consumes between 0.4 and 1.65 gallons of diesel fuel, depending strongly on the throttle setting (RPM);
- It is general practice to idle a diesel engine higher than 1,000 RPM when accessory loads are present, such as to provide heating or air conditioning to the cab;
- Truckers can reasonably be expected to operate their heaters on days when the temperature is below 50 degrees Fahrenheit and operate the air conditioning on days when the temperature is above 70 degrees Fahrenheit;
- Based on the arithmetic mean for all tests, irrespective of engine RPM, 8,224 grams of CO\textsubscript{2} are released in each hour of diesel engine idling;
- The average rate of CO\textsubscript{2} released from idling trucks (grams/hour) tested at a low RPM (600-800) and also tested at a high RPM (1,000-1,200) are 5,805 grams/hr and 11,815 grams/hr, respectively.

The key results of the study are summarized in Table 3.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
 & CO\textsubscript{2} (g/hr) & Gal/hr \\
\hline
High Value & 16,578 & 1.65 \\
Low Value & 3,915 & 0.39 \\
Average Value & 8,224 & 0.82 \\
Standard Deviation & 3,571 & 0.40 \\
Coefficient of Variation & 0.43 & 0.43 \\
Low RPM Average (600-800 RPM) & 5,805 & 0.58 \\
High RPM average (1,000-1,200 RPM) & 11,815 & 1.18 \\
\hline
\end{tabular}
\caption{High, Low, and Average CO\textsubscript{2} Emissions and Fuel Consumption Rates for Class 8 Trucks (Han Lim 2002)}
\end{table}

10U.S. EPA (Han Lim). October 2002. \textit{Study of Exhaust Emissions from Idling Heavy-Duty Diesel Trucks and Commercially Available Idle-Reducing Devices.} This study generated preliminary emissions values of 144 grams/hr NO\textsubscript{x}, 8,224 grams/hr CO\textsubscript{2}, and fuel consumption of 0.82 gal/hr.
It should be noted that fuel consumption during extended idling depends on RPM, accessory loads (e.g., compressor), and hotel loads (HVAC, in-cab appliances). There are very large differences in fuel consumption among trucks, even under similar loading. This indicates that there will be some evolution in emission factors over time. Additional studies have also been published.11,12

As of this methodology drafting, USEPA has not published or approved CO\textsubscript{2} emission factors and standard fuel consumption rates for “hotelling” by heavy-duty diesel trucks. If and when USEPA publishes such data, those must be used. Until that time, this methodology uses the Han Lim 2002 values, with a temperature adjustment to reflect emissions at two different RPM levels.

4.2.2 Temperature Adjustment

Although TSE systems provide services to mobile vehicles, service occurs at fixed locations, which makes TSE a stationary technology. Therefore it is possible to apply the average monthly temperature at the TSE location, combined with the emission factor that accounts for variations in engine RPM (which has the most significant effect on emissions and fuel use). This more detailed model will account for the differing levels of engine RPM that would be necessary to maintain a comfortable cab temperature, in the absence of idle reduction technology. Climate control is the main reason drivers idle their engine, followed by the need to operate electrical accessories.13

To portray the temperature experienced during idling periods, average monthly low temperatures are used. Low temperatures typically correspond with overnight lows, which are the times in which the majority of drivers lay over at truck stops, and also the time that idle reduction equipment experiences the highest usage.

During months when the average monthly low temperature is below 50 degrees Fahrenheit, or above 70 degrees Fahrenheit, this methodology assumes drivers are operating climate control equipment as well as electrical accessories and therefore idle their engines at the higher 1,000-1,200 RPM rate (emitting on average 11,815 g CO\textsubscript{2}/hr). During months when the average monthly low temperature is between 50 and 70 degrees, the methodology assumes drivers are only operating electrical accessories and therefore idle their engines at the lower 600-800 RPM rate (emitting on average 5,805 g CO\textsubscript{2}/hr.

4.2.3 Baseline Emissions Equations

If the average monthly low temperature during month \(X\) at TSE location \(Y\) is below 50 degrees Fahrenheit, or above 70 degrees Fahrenheit, then:

\[
BE_{\text{month}X,\text{loc}Y} = \left(\text{EF}_{\text{high}} \times \text{Hours}_{\text{TSE}}\right) / 1,000,000
\]

Where:

\(BE_{\text{month}X,\text{loc}Y}\) Baseline emissions during month \(X\) at TSE location \(Y\); metric tons CO\textsubscript{2}

11 Stodolsky, Gaines, and Vyas. \textit{Analysis of technology Options to Reduce the Fuel Consumption of Idling Trucks}. June 2000.
13 Lutsey, Brodrick, Sperling and Oglesby. \textit{Heavy-Duty Truck Idling Characteristics – Results from a Nationwide Truck Survey}. Submitted to TRB 2004.
EF_{high} Han Lim 2002 emission factor for 1,000-1,200 RPM = 11,815 gCO₂/hour

Hours_{TSE} Hours TSE systems were used, based on measured activity data, during month X at location Y

1,000,000 Conversion from grams to metric tons CO₂

If the average monthly low temperature during month X at TSE location Y is between 50 and 70 degrees Fahrenheit, then:

\[
BE_{monthX,locY} = \frac{(EF_{low} \times \text{Hours}_{TSE})}{1,000,000}
\]

(2)

Where:

BE_{monthX,locY} Baseline emissions during month X at TSE location Y; metric tons CO₂

EF_{low} Han Lim 2002 emission factor for 600-800 RPM = 5,805 gCO₂/hour

Hours_{TSE} Hours TSE systems were used, based on measured activity data, during month X at location Y

1,000,000 Conversion from grams to metric tons CO₂

Then summing across months and across TSE facility locations included in the project:

\[
BE_{locY} = \sum_{month=1}^{12} BE_{monthX,locY}
\]

(3)

And

\[
BE_{project} = \sum_{Y=1}^{M} BE_{locY}
\]

(4)

Where:

BE_{locY} Baseline emissions at TSE location Y, summed over the year; metric tons CO₂

BE_{monthX,locY} Baseline emissions during month X at TSE location Y; metric tons CO₂

BE_{project} Baseline emissions across all TSE locations included in project, summed over the year; metric tons CO₂

Y 1, 2, 3 ... M locations included in the TSE project
4.3 Project Emissions

4.3.1 Emission Factors

The TSE systems eligible under this methodology allow the truck driver to shut down the main propulsion engine completely, eliminating the GHG (and other) emissions associated with idling during layover periods in a travel center. Thus in the project scenario there is no need to measure emissions from the truck’s diesel engine. Only emissions from electricity generation, used to power the TSE system, are quantified and deducted from baseline emissions to derive the calculation of net GHG emission reductions.

The CO₂ emissions from power generation are estimated using data from the USEPA’s Emissions & Generation Resource Integrated Database (eGRID). eGRID is a comprehensive source of data on the environmental characteristics of electric power generated in the United States, including emissions of nitrogen oxides, sulfur dioxide, carbon dioxide, methane, and nitrous oxide, net generation, resource mix, and other attributes. The latest eGRID release is 2010 version 1.1, containing data for 2007. Importantly for this methodology, eGRID provides data organized by electricity generating company (EGC), North American Electric Reliability Corporation (NERC) region, and eGRID subregion, which are based on power company boundaries and each company’s mix of GHG-emitting and non-emitting resources used to serve its load. Aggregated data is also available by state, parent company, power control area, and other aggregation levels.

The Project Proponent must use emission factors from eGRID2010 Version 1.1. If and when USEPA releases another eGRID update, that version must be used. The Proponent should download, from the eGRID website, “eGRID2010 Version 1.1 – all files,” which is a .ZIP file containing multiple spreadsheet files, technical support documents, and tables by region and subregion. On downloading and unzipping the file, the Project Proponent will find the spreadsheet “eGRID2010V1_1_year07_AGGREGATION.xls.”

To calculate CO₂ emissions from the electric power consumed by TSE systems included within the project boundary, the Project Proponent will multiply total kWh consumed for that TSE location and reporting period by one of the following eGRID emission factors, from the AGGREGATION spreadsheet, in order of preference below.

1. If the electricity generating company (EGC) serving the TSE facility is known, use the EGC07 tab, which provides EGC owner-based year 2007 data. Look up the EGC in the left-hand column, and the EGC annual CO₂ total output emission rate, in lb/MWh, in column W. If the EGC is known, this emission factor must be used as it will provide a more accurate CO₂ emission rate than rates aggregated by eGRID subregion, NERC region, or State.

2. If the EGC serving the TSE location is not known, the eGRID subregion may be known (see the map “eGRID2010_eGRID subregions.jpg,” reproduced in Annex B). This will be feasible unless the TSE facility is located on/near a boundary between eGRID subregions. Use the SRL07 tab, which provides emission rates by eGRID subregion. Look up the appropriate eGRID subregion

15 Note that the download also contains earlier years; be sure to use the “year07_AGGREGATION” spreadsheet which contains the latest available data.
in the left-hand column, and the eGRID subregion annual CO₂ total output emission rate, in lb/MWh, in column U.

3. If the EGC serving the TSE location is not known, and it is not possible to place the TSE facility definitively in an eGRID subregion (e.g. because near a boundary), it may still be possible to identify the larger NERC region in which the facility is located (see the map “eGRID2020_NERC_regions.jpg,” reproduced in Annex B). This will be feasible unless the facility is located on/near a boundary between NERC regions. Use the NRL07 tab, which provides emission rates by NERC region. Look up the appropriate NERC region in the left-hand column, and the NERC region annual CO₂ total output emission rate, in lb/MWh, in column T.

4. If and only if none of the above are possible, use the ST07 tab, which provides aggregated state-level emission rates. Look up the state where the TSE facility is located in the left-hand column, and the State annual CO₂ total output emission rate, in lb/MWh, in column T. State-level emission rates may only be used if the EGC is not known and it is not possible to place the TSE facility definitively in an eGRID subregion or NERC region.

4.3.2 Project Emissions Equations

Calculate project emissions using the following equation:

\[
P_{E, monthX, locY} = \frac{kWh}{1000} \times \left(\frac{\text{Rate}_\text{eGRID}}{2205} \right) \tag{5}
\]

Where:

- \(P_{E, monthX, locY} \) Project emissions from electricity consumed during month \(X \) at TSE location \(Y \); metric tons CO₂
- 1,000 Conversion from kWh to MWh
- \(\text{Rate}_\text{eGRID} \) eGRID emission rate for CO₂, by (in order of preference) EGC, eGRID subregion, NERC region, or State; lb/MWh
- 2,205 Conversion from lb/MWh to metric tons/MWh

Then summing across months and across TSE facility locations included in the project:

\[
P_{E, locY} = \sum_{month=1}^{12} P_{E, monthX, locY} \tag{6}
\]

And

\[
P_{E, project} = \sum_{Y=1}^{M} P_{E, locY} \tag{7}
\]

Where:
Methodology for GHG Emission Reductions through Truck Stop Electrification

PE_{locY} Project emissions at TSE location Y, summed over the year; metric tons CO$_2$

$PE_{monthX,locY}$ Project emissions during month X at TSE location Y; metric tons CO$_2$

$PE_{project}$ Project emissions across all TSE locations included in project, for the year; metric tons CO$_2$

Y 1, 2, 3 ... M locations included in the TSE project

4.4 Leakage

Leakage is defined as an increase in emissions outside the project boundary attributable to the implementation of the project. In cases where leakage occurs, it must be accounted for and subtracted from the reported net GHG emission reductions for the verification period.

Potential types of leakage include activity shifting (a shifting of GHG-emitting activities outside the project boundaries due to the project), market effects (an increase in GHG-emitting activities due to unchanged market demand for a good or service whose supply is decreased due to project activities), and others.

In this case because reduction in idling and use of TSE systems does not increase idling outside the project boundaries, nor affect the quantity of goods and services produced, nor cause any other expected significant increases in emissions outside project boundaries, leakage is assumed to be zero.

4.5 Emission Reductions

Net GHG emission reductions achieved by the TSE project, prior to accounting for uncertainty, are calculated as:

$$ER_{project} = (BE_{project} - PE_{project}) \times (1 - LK)$$ \hspace{1cm} (8)

Where:

$ER_{project}$ Net emission reductions across all TSE locations included in project, for the year; metric tons CO$_2$

$BE_{project}$ Baseline emissions across all TSE locations included in project, summed over the year, as derived in Equation (4); metric tons CO$_2$

$PE_{project}$ Project emissions across all TSE locations included in project, summed over the year, as derived in Equation (7); metric tons CO$_2$

LK Leakage discount; here $LK = 0$ as described in section 4.4

4.6 Uncertainty

4.6.1 Sources of Uncertainty
The emission reduction calculations in this methodology are designed to understand possible emissions, and to minimize the possibility of overestimation and over-crediting of GHG emission reductions due to various uncertainties, primarily associated with emission factors and representative sampling populations.

There are several uncertainties related to estimates of GHG emission reductions from TSE projects. Some of these uncertainties are more easily quantified than others. These include:

- **Emission factors.** CO₂ emissions from the idling of diesel engines are estimated using the emission factors in Table 3, from USEPA (Han Lim) 2002. CO₂ emissions from the generation of electricity consumed by TSE systems are estimated using eGRID emission factors by electricity generating company, eGRID subregion, NERC region, or aggregated State-level data.

- **Activity data.** The measurement of TSE activity is not a source of uncertainty. The TSE operator is assumed to track precisely the duration of system usage and kWh consumption, and this data will be collected, verified, recorded, and reported as an integral part of the TSE project activity.

- **Induced Demand.** In the early stages of adoption of an innovative technology, encouraging trial and adoption is a critical challenge. Drivers must be induced to adjust longstanding behaviors and attitudes. To encourage driver trial and adoption, some TSE companies have packaged numerous benefits and services along with their HVAC services. This potentially could induce drivers to use the TSE system when they would not have idled their trucks otherwise. However this sort of use would be costly to the driver and/or their employer, and would not return fuel savings to the truck owner. During this phase in the evolution of the idle reduction industry, TSE operators generally do not perceive “gratuitous use” to be a driving factor. The impact of local weather on TSE usage is direct evidence that primary demand (the direct substitution of idling) is far greater than induced demand.

- **Life-Cycle Emissions.** TSE facility life-cycle emissions could be potentially reduced if the process of manufacturing and deploying TSE systems was itself carbon intensive. For the purposes of this methodology, since TSE operators generally do not manufacture their systems and lack reliable information about the carbon intensiveness of systems built and installed by contractors, emissions from construction are ignored and assumed to be *de minimis* relative to the overall emission reductions over the full TSE facility life.

- **Environmental influences and operating errors.** The variation in TSE system efficiency due to environmental influences or operating practices may also contribute to overall uncertainty. Operating malfunctions of the project, if any, shall be recorded and the project activity data shall be adjusted to correct for faulty or missing data. The contribution of this variation to overall uncertainty expected to be small.

These potential sources of uncertainty, and the associated QA/QC program elements designed to minimize them, are summarized in Table 4.
Table 4. Uncertainties and Mitigation Procedures

<table>
<thead>
<tr>
<th>Data Parameter</th>
<th>Uncertainty Level of Data</th>
<th>QA/QC Procedures Risk Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of TSE systems</td>
<td>Very low</td>
<td>TSE operator will have comprehensive records of the number of TSE systems installed, in operation, and used by truckers.</td>
</tr>
<tr>
<td>Operating time of TSE systems</td>
<td>Very low</td>
<td>TSE operator will track precisely the duration of system usage. Usage will be time-stamped, allowing the operator to know during which month usage occurred and apply the correct emission factor based on average monthly low temperature at the TSE location.</td>
</tr>
<tr>
<td>Monthly low temperatures</td>
<td>Very low</td>
<td>Weather data will be acquired from publicly available sources, originating from weather stations in the closest proximity to project locations. Data sources include historical weather station readings from: 1) Automated Surface Observing Systems (ASOS) stations maintained by the Federal Aviation Administration,气象 Assimilation Data Ingest System (MADIS) stations managed by the National Oceanic and Atmospheric Administration, and other Personal Weather Stations that have certified quality controls (PWS Network).</td>
</tr>
<tr>
<td>Electricity consumed by TSE</td>
<td>Very low</td>
<td>TSE operator will track precisely the electricity consumed by TSE users. Electricity meters will be subject to a regular maintenance and testing regime to ensure accuracy. Their readings will be checked by the electricity distribution company. Any faulty or missing activity data shall be adjusted and corrected to ensure that net GHG emission reductions are not overestimated.</td>
</tr>
<tr>
<td>systems (kWh)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Parameter</th>
<th>Uncertainty Level of Data</th>
<th>QA/QC Procedures Risk Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission factors (baseline)</td>
<td>Low/medium</td>
<td>Variation and uncertainty does exist in the Han Lim 2002 emission factors for diesel engine idling in Class 8 trucks. In the absence of more comprehensive studies, these emission factors are accepted as the best available. CO₂ emissions are most strongly affected by idle RPM, which this methodology addresses by including two different RPM levels to represent typical baseline idling for different monthly low temperatures.</td>
</tr>
<tr>
<td>Emission factors (project)</td>
<td>Low</td>
<td>The eGRID emission factors used to estimate CO₂ emissions from generated electricity are based on extensive electric sector data collected by USEPA and the U.S. Department of Energy - Energy Information Administration. While these emission factors do have some embedded uncertainties, this methodology does not require the Project Proponent to account for uncertainties in the eGRID emission factors. The methodology does require the Project Proponent to use the most specific eGRID emission factor available. If the EGC providing TSE system electricity is known, the eGRID factor for this EGC must be used. Otherwise, the emission factor for the eGRID subregion, NERC region, or State where the TSE facility is located (in declining order of preference) may be used. The eGRID factors do not enable consideration of the resource mix generating electricity (i.e., dispatch order) at the time of day when TSE facilities are used. This would require tracking not just electricity consumption but also...</td>
</tr>
</tbody>
</table>

18 See the eGRID 2010 Technical Support Document, included in the eGRID download at http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html, for eGRID data sources and methodology. eGRID is developed from a variety of data collected by the U.S. Environmental Protection Agency (EPA), and the Energy Information Administration (EIA). Federal data sources include EPA, Clean Air Markets (EPA/CAMD) Annual and Ozone Season Emissions data (EPA, 2010); EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2008; EIA, EIA-860: Annual Electric Generator Report (EIA, 2008a); EIA, EIA-861: Annual Electric Power Industry Report (EIA, 2008b); EIA, EIA-923 Schedule 3B: Power Plant Operations Report, Prime Mover Fuel Consumption (EIA, 2008c); EIA, EIA-923 Schedule 2: Power Plant Operations Report, Plant Cost and Quality of Fuel Receipts (EIA, 2008d); EIA, Electric Power Monthly, Plants Sold and Transferred (EIA, 2007-2010); and the North American Electric Reliability Corporation (NERC). Data displayed in eGRID are derived from the above data sources; EPA does not collect data directly from electric generators for eGRID. Inconsistencies between data sources, missing data, and ambiguous data occasionally necessitate adjustments to values of individual data elements. When necessary, EPA substitutes data from secondary sources or default values. EPA also updates ownership, corporate affiliation, and grid configuration data.
<table>
<thead>
<tr>
<th>Data Parameter</th>
<th>Uncertainty Level of Data</th>
<th>QA/QC Procedures Risk Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>the time of day consumed, combined with time of day-specific emission factors accounting for which plants are dispatched at that time. Because the majority of TSE usage is at night, when baseload resources will generally be generating the majority of the power, the eGRID factors are considered sufficiently accurate.</td>
</tr>
</tbody>
</table>

4.6.2 Uncertainty Deduction

The Project Proponent should address, in the GHG Project Plan, sources and magnitude of uncertainties relevant to both the baseline and with-project scenarios.

The *ACR Standard* requires that total uncertainty be no more than 10% of the mean estimated net emission reductions at 90% confidence. If the Project Proponent cannot meet the targeted ±10% of the mean at 90% confidence, then the reportable amount shall be the mean minus the lower bound of the 90% confidence interval.

Total uncertainty should be estimated by summing estimated baseline and project uncertainty:

\[
UNC = \sqrt{UNCERTAINTY_{BSL}^2 + UNCERTAINTY_P^2}
\]

(9)

Where:

- **UNC** Total uncertainty for the TSE project; %
- **UNCERTAINTY_BSL** Total uncertainty estimated for baseline scenario; %
- **UNCERTAINTY_P** Total uncertainty estimated for project scenario; %

If **UNC ≤ 10% of ER_project**, then no deduction for uncertainty is required.

If **UNC > 10% of ER_project**, then the value of **ER_project** shall be adjusted to account for uncertainty:

\[
ER_{project_adjusted} = ER_{project} \times (1 - UNC)
\]

(10)

Where:

- **ER_project_adjusted** Net emission reductions across all TSE locations included in project, adjusted for uncertainty; metric tons CO₂
- **ER_project** Net emission reductions across all TSE locations included in project, as calculated in Equation (8); metric tons CO₂
- **UNC** Total uncertainty for the TSE project; %. If **UNC ≤ 10% of ER_project**, set **UNC = 0**.
4.7 Calculation of ERTs

The Project Proponent shall include in the GHG Project Plan an *ex ante* estimation of Emission Reduction Tonnes (ERTs) over the duration of the approved Crediting Period. Actual ERT issuance will be based on *ex post* verified emission reductions.

\[
ERT_t = \left(ER_{project,t} - ER_{project,1} \right) \times (1 - BUF)
\]

(11)

Where:

- \(ERT_t \) Number of Emission Reduction Tonnes at time \(t = t_2 - t_1 \)
- \(ER_{project,t} \) Cumulative total net GHG emissions reductions up to time \(t_2 \), adjusted for uncertainty per Equation (10)
- \(ER_{project,1} \) Cumulative total net GHG emissions reductions up to time \(t_1 \), adjusted for uncertainty per Equation (10)
- \(BUF \) Percentage of project ERTs contributed to the ACR buffer pool; here \(BUF = 0 \) since emission reductions from avoidance of diesel idling are irreversible

Note that the calculation of ERTs accounts for uncertainty, but there are no required deductions for leakage (see Section 4.4) or non-permanence (see Section 6.4).
5. DATA COLLECTION AND MONITORING

It is critical for the accuracy and transparency of calculating, monitoring and verifying GHG reductions that:

- Measurements of operating hours and electricity consumption be undertaken with reliable equipment that is regularly calibrated;
- Average monthly low temperatures be accurately recorded using data from the closest weather station (ASOS, MADIS, etc.);
- Multiple data cross-checks and internal validation be performed; and
- Measurement and calibration equipment and processes and changes thereto be clearly described as part of the CO₂ emissions reporting process.

5.1 Monitoring Plan Guidelines

A monitoring plan is a working document that describes procedures for collecting activity data, baseline and project emissions data, and for ensuring and controlling the quality of the collected data. The TSE project monitoring plan will be updated whenever the methodologies used to measure project activity or baseline emissions are changed.

Some of the key GHG accounting principles that should drive the design of data collection and monitoring include:¹⁹

- Relevance: levels of accuracy and uncertainty associated with monitoring methods should reflect the intended use of the data and the objectives of the offset project. Some intended uses may require greater accuracy than others.

- Accuracy: measurements, estimates, and calculations should be unbiased, and uncertainties reduced as far as practical. Calculations and measurements should be conducted in a manner that minimizes uncertainty.

- Conservativeness: where there are uncertainties in monitored data, values used to quantify GHG reductions should err on the side of underestimating rather than overestimating reductions.

5.2 Data Measurements

Implementation of the quantification methodology described in section 4 requires measurement of the following activity data:

- Operating hours of the TSE systems (equal to hours of diesel idling avoided)
- Electricity consumption of the TSE systems and any office buildings

¹⁹ Based on World Resources Institute/World Business Council for Sustainable Development (WRI/WBCSD), GHG Protocol for Project Accounting, November 2005.
Average monthly low temperatures (for the temperature-adjusted baseline emissions model), based on data from approved sources (ASOS, MADIS or certified PWS).

Records of all data must be recorded and archived electronically in a database maintained by the Project Proponent. Data aggregations of hourly, daily, and monthly data totals should be available by querying the database. All database reports and calculations to support the CO₂ emission reduction estimates must be archived to facilitate ex post verification.

Table 5 lists the key data and parameters to be monitored and recorded for the purposes of capturing activity data, calculating emission reductions, conducting internal cross-checking, and providing data for third-party validation and verification. All project data should be stored electronically and centrally in a format that is easily accessible for validation and verification.

Table 5. Parameters for Monitoring and Emission Reduction Calculations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Description</th>
<th>Source of data</th>
<th>Used in equations</th>
<th>Monitoring frequency</th>
<th>Proportion of data monitored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of TSE facilities included in project</td>
<td>#</td>
<td>Total TSE facilities included in the GHG project boundary</td>
<td>Project Proponent records</td>
<td>-</td>
<td>Once per Crediting Period</td>
<td>100%</td>
</tr>
<tr>
<td>Number of TSE spots per facility / per total project</td>
<td>#</td>
<td>Total TSE parking spots included in the GHG project boundary</td>
<td>Project Proponent records</td>
<td>-</td>
<td>Once per Crediting Period</td>
<td>100%</td>
</tr>
<tr>
<td>Locations of TSE facilities</td>
<td></td>
<td>Geographic location of each TSE facility included in the project, necessary to determine average monthly low temperatures (baseline emissions calculation) and appropriate eGRID emission factor (project emissions calculation)</td>
<td>Project Proponent records</td>
<td>-</td>
<td>Once per Crediting Period</td>
<td>100%</td>
</tr>
</tbody>
</table>
Methodology for GHG Emission Reductions through Truck Stop Electrification

#### Parameter	Unit	Description	Source of data	Used in equations	Monitoring frequency	Proportion of data monitored
Operating hours for each TSE system spot | Hours | Hours of operation, by month, for each TSE system spot at each included facility, necessary for calculating hours of avoided idling (baseline emissions calculation) | Project Proponent records | 1, 2 | Daily, weekly, monthly, annually | 100%
Monthly low temperatures | °F | Nightly low temperatures, averaged over the month | Weather data from ASOS, MADIS, or certified PWS | 1, 2 | Measured daily, averaged monthly | 100%
Electricity consumption of the TSE systems and office buildings | kWh | Electricity consumed by TSE systems included in the project boundary, necessary for calculating emissions from generation of electricity consumed by TSE systems (project emissions calculation) | Project Proponent records / electric distribution company bills | 5 | Daily, weekly, monthly, annually | 100%

5.3 Quality Assurance/Quality Control (QA/QC) Measures

The Project Proponent should maintain a QA/QC program including measures such as:

- **Accurate metering and cross-checks:** TSE system usage measured by visit duration hours (from operations data collection), and by the quantity sold (or billable hours, from financial/revenue transactions). These two independent measures of activity should be reviewed and updated, as necessary, as well as used as a cross-check against each other.

- **Calibrations on key monitoring instrumentation are made at least annually, and more frequently if any QA/QC issues are indicated.**

- **Responsible entities:** field personnel and corporate data system manager shall be responsible for data capture, to ensure data are properly recorded into the database.

- **A designated corporate QA/QC officer shall be responsible for the following:**
Methodology for GHG Emission Reductions through Truck Stop Electrification

- Development, implementation, and oversight of QA/QC procedures for measurement, calibration, and data collection of CO₂-related data;
- Assess calculation results to ensure data have been properly processed; and
- Strategies for identifying and managing missing or poor-quality data, and making any necessary adjustments to data based on findings from the QA/QC measures.

- Daily log sheets, calibration and maintenance records, 3rd party analytical results, utility bills/receipts, and other electronic and hard copy data records shall be archived for a minimum of three (3) years to support future auditing and verification activities.

- Emission reduction estimates shall be made so as to overstate project emissions and understate baseline emissions, thereby erring on the side of understating net GHG emission reductions.

5.4 Validation and Verification Interval

Per the ACR Standard, validation of the GHG Project Plan will occur once per Crediting Period. Verification of GHG assertions is at the discretion of the Project Proponent, provided it conforms to ACR requirements. Verification must occur prior to any new issuance of ERTs. ERTs may be created and issued annually, or at the Proponent’s request, more or less frequently. At each request for issuance of new ERTs, the Project Proponent must submit a verification statement from an approved verifier based on a desk audit. No less than once every five years, Proponents must submit a verification statement based on a full verification including a field visit to the project site.
6. EMISSIONS OWNERSHIP AND QUALITY

6.1 Real

TSE project emission reductions should represent a recognizable action that directly resulted in reductions of anthropogenic CO₂ emissions, which would have been released to the atmosphere in the absence of the TSE project. Emission reductions must be demonstrated to have actually taken place and to be attributable to TSE use, as monitored using a comprehensive data collection, storage, and management system.

Emission reductions must have occurred and been verified prior to ERT issuance. ACR will not forward issue nor forward register a projected stream of future offsets.

6.2 Surplus

Emission reductions are surplus if they are not required by law. While several states have enacted anti-idling regulations with the goal of reducing criteria pollutant (NOₓ, CO, PM, VOC) emissions, no state or federal laws require truck drivers or fleets to reduce GHG emissions.

Substantial problems with compliance and enforcement have occurred in every area that has enacted an anti-idling regulation. Because of these concerns, the majority of state environmental agencies – as well as their respective EPA Regional Offices – are not convinced these regulations create real emission reductions, and have not incorporated these emission reductions in their State Implementation Plans (SIPs). Among the jurisdictions that do not claim these emission reductions within the state SIP are the states of New York, Pennsylvania, Arizona, Nevada, and New Hampshire, as well as the cities of Denver, Colorado; Washington, D.C.; St. Louis, Missouri; and Philadelphia, Pennsylvania.

There are also several jurisdictions that have made provisions for incorporating idling emission reductions within the SIP, but have specifically exempted long-haul trucks with sleepers. These jurisdictions include the states of California, Arizona, and Illinois, and Salt Lake City, Utah. Since California’s anti-idling regulation (implemented January 2005) exempts sleeper trucks at travel centers, it does not affect TSE emission reductions. It should be pointed out that this regulation was developed to reduce airborne toxics and was not intended to regulate GHG emissions.

Only the emission reductions from TSE sites located within areas where there are no anti-idling regulations, where the anti-idling regulations include provisions specifically exempting long-haul trucks with sleepers, or where the Project Proponent presents evidence suitable to the validator/verifier that anti-idling regulations are routinely not enforced, are eligible for crediting under this methodology.

6.3 Unique

Emission reduction accounting must ensure that there is no double counting, double crediting or double selling. The Project Proponent’s accounting system must record each visit, TSE system use, and track
this usage by driver, fleet, parking space, facility, city, and state. Any double counting in systems use and emissions reduction calculations can thus readily be identified.

ERTs registered on ACR will be issued unique serial numbers that link the verified emission reduction to a specific project or source, geographic identifier, and vintage year, guarding against the possibility of multiple sales. This also provides the ability to track all transfers, trades, retirements or cancellations of ERTs. Market participants can track individual emission reductions from cradle to grave using the online transaction log.

6.4 Permanent

The CO₂ emission reductions from avoided diesel idling are permanent (irreversible) because the emissions are avoided from trucks not idling, and which would have idled in the absence of the TSE project. Once the TSE system has operated and the truck has not idled, the emission reduction has occurred and cannot then be undone.

6.5 Verifiable

The data sources used to create the ERTs claimed in the GHG Project Plan must be readily verifiable by a competent independent third party validation/verification body. Measurement data records and electricity consumption data should be maintained by the Project Proponent and be readily available for audit. The Project Proponent should maintain its own QA/QC system and internal cross-checks to identify, diagnose and correct for any apparent data anomalies. The Project Proponent's data system should record fine-grained data about locations (parking space, facility, city, county, state), visits (e.g., date and time of the start and end of each session), and drivers. This information should be maintained in a database format that is routinely evaluated for programming errors and data anomalies. Data audits should be readily supported.

6.6 Direct Emission Reductions

The emission reductions from a TSE project will represent direct emissions reduced by the project activity (through the avoidance of diesel engine idling) at clearly identified and controlled sources. None of the emission reductions claimed by the project will be indirect emission reductions.

The Project Proponent shall include in its Annual Attestation that all emission reductions are direct reductions.

6.7 Ownership of GHG Reductions

The emissions from diesel engines are “owned” by the owner/operators of the trucks, unless signed over contractually to another party. These owner/operators must sign over to the Project Proponent all rights to the environmental attributes, including GHG reductions, inherent in their use of the Project Proponent's TSE facilities. The Project Proponent should provide to ACR a sample agreement with participating truckers indicating they have relinquished ownership of the GHG reductions to the Project Proponent.

Other entities with a potential or hypothetical claim on GHG reductions could include:
• **Travel centers hosting the TSE facilities.** Travel centers will generally own the real estate on which TSE systems are deployed, but do not contribute either technology or investment toward the achievement of TSE emission reductions. Travel centers may receive a percentage of the TSE operator's gross receipts as their inducement to allow the TSE operator to install systems. If the travel center operator has signed an agreement conferring rights to GHG emission reductions to the Project Proponent as lessee, the Project Proponent should provide such sample agreement to ACR.

• **Granting agencies.** In certain instances, the TSE operator’s ownership of CO₂ emission credits has been, or may in the future be, limited by regulations established by federal or state agencies that provided funding to finance a portion of the TSE system installation costs. Granting federal agencies could potentially have a claim on carbon dioxide reductions that could limit the TSE operator's right to sell CO₂ reductions. The focus of these funding agencies (primarily the U.S. EPA and the U.S. Department of Transportation) is on the reduction of criteria pollutant emissions. These funding programs generally make no provisions concerning greenhouse gases, nor do they generally prohibit the TSE operator from selling NOx and VOC reductions.

• **State agencies.** Individual states may have their own criteria that can affect either emission credit ownership, or the extent to which such emission credits may be sold. If state mandates (and/or state funding programs) are directed toward criteria pollutant or particulate matter reductions, but do not address GHG emission reductions, the Project Proponent may argue that GHG emission reduction ownership is unaffected by these mandates.

The Project Proponent shall address in the GHG Project Plan any potential conflicting claims, and if necessary provide supporting evidence that they have title or contractual rights to the claimed emission reductions and that no other entity has a conflicting claim, prior to ACR registration.

6.8 Community and Environmental Impacts

Per the ACR Standard, community and environmental impacts must be net positive overall. Project Proponents shall document in the GHG Project Plan a mitigation plan for any foreseen negative community or environmental impacts, and shall disclose in their Annual Attestations any negative environmental or community impacts or claims by community members of negative environmental and community impacts.

TSE projects may not have significant community and environmental impacts. If there are any significant impacts from the TSE installation and/or operation, Project Proponents should take into account ACR’s Community and Environmental Impacts criteria when applying this methodology to specific projects. These criteria require analysis of any adverse environmental or social impacts on the communities affected by a project. If there are any adverse impacts that may result from the project, Project Proponents should conduct stakeholder meetings with community groups or other appropriate stakeholders to ensure that any concerns associated with the project are addressed.

TSE projects will however cause positive environmental co-benefits in the form of reductions in criteria pollutant emissions (e.g., NOx, PM, CO, and VOC), as well as environmental/community benefits such as noise reduction, job creation, etc. The Project Proponent is encouraged to quantify such benefits in the GHG Project Plan and consider additional optional certifications.
6.9 Warranties

The Project Proponent shall include in the GHG Project Plan the following warranty:

“I hereby warrant that all information provided by [Project Proponent] in this GHG Project Plan is true and factual, and all matters affecting the validity of this GHG Project Plan or consequent emission reduction credit claims have been fully disclosed. This project has not been previously registered with any other emission reduction program or regulatory agency. [Project Proponent] has title to the GHG emission reductions created by this project, and warrants that no security has been granted over those rights, and said rights are valid. Any VER delivery risks associated with lack of statutory rights, governmental agency recognition, or future emission reduction creation operations commensurate with potential VER forward option volumes will be mitigated by [Project Proponent] via clearing house, registry, and/or insurance instruments, as appropriate.”

6.10 Annual Attestations

The Project Proponent shall submit Annual Attestations, as required in the ACR Standard, in a format to be provided by ACR. The Annual Attestations address continued undisputed ownership of emission reductions, any claims of negative environmental or community impacts, and a mitigation plan in the case of such claims.
APPENDIX A: WORKED EXAMPLE FOR BASELINE AND PROJECT EMISSIONS

In this worked example of the emission calculations in Chapter 4, we calculate baseline and project emissions, net GHG reductions, and ex ante estimated ERTs for a hypothetical TSE facility located in Dallas, Texas. The TSE project is assumed to include only this one TSE facility.

1. Activity data

Assume the following monthly average low temperatures, TSE usage hours, and electricity consumption at the Dallas TSE facility:

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low temp (°F)</td>
<td>36</td>
<td>41</td>
<td>49</td>
<td>56</td>
<td>65</td>
<td>73</td>
<td>77</td>
<td>76</td>
<td>69</td>
<td>58</td>
<td>47</td>
<td>39</td>
</tr>
<tr>
<td>Usage hours location</td>
<td>20,299</td>
<td>18,723</td>
<td>18,529</td>
<td>20,270</td>
<td>23,089</td>
<td>25,020</td>
<td>29,960</td>
<td>30,772</td>
<td>24,184</td>
<td>22,877</td>
<td>18,739</td>
<td>16,901</td>
</tr>
<tr>
<td>Electricity consumption (kWh)</td>
<td>30,449</td>
<td>28,085</td>
<td>27,794</td>
<td>30,405</td>
<td>34,634</td>
<td>37,530</td>
<td>44,940</td>
<td>46,158</td>
<td>36,276</td>
<td>34,316</td>
<td>28,109</td>
<td>25,352</td>
</tr>
</tbody>
</table>

2. Baseline emissions

For January, February, March, June, July, August, November, and December, average temperatures are either below 50°F or above 70 °F, so we assume truckers would be idling at the 1,000-1,200 RPM level to power both climate control equipment and electrical accessories. We use Equation (1). For example for January:

BE_{monthX,locY} = \frac{(11,815 \text{ gCO}_2/\text{hour} \times 20,299 \text{ hours})}{1,000,000} = 239.8 \text{ metric tons CO}_2

For April, May, September, and October, average temperatures are between 50°F and 70 °F, so we assume truckers would be idling at the 600-800 RPM level to power electrical accessories only. We use Equation (2). For example for April:

BE_{monthX,locY} = \frac{(5,805 \text{ gCO}_2/\text{hour} \times 20,270 \text{ hours})}{1,000,000} = 117.7 \text{ metric tons CO}_2

Repeating this calculation for each month yields:

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission factor (gCO₂/hr)</td>
<td>11,815</td>
<td>11,815</td>
<td>11,815</td>
<td>5,805</td>
<td>5,805</td>
<td>11,815</td>
<td>11,815</td>
<td>11,815</td>
<td>5,805</td>
<td>5,805</td>
<td>11,815</td>
<td>11,815</td>
</tr>
<tr>
<td>Baseline emissions for month (metric tons CO₂)</td>
<td>239.8</td>
<td>221.2</td>
<td>218.9</td>
<td>117.7</td>
<td>134.0</td>
<td>295.6</td>
<td>354.0</td>
<td>363.6</td>
<td>140.4</td>
<td>132.8</td>
<td>221.4</td>
<td>199.7</td>
</tr>
</tbody>
</table>

Summing across months using Equation (3) gives a total of 2,639.1 metric tons CO₂. Because there is only one TSE facility in this hypothetical project, 2,639.1 metric tons CO₂ is the total baseline emissions for the year.

3. Project emissions

Imagine the electric generating company (EGC) is not known, but the TSE facility location (Dallas) clearly places the project in eGRID subregion ERCT. Having downloaded the eGRID2010 Version 1.1 files, and opened “eGRID2010V1_1_year07_AGGREGATION.xls,” we go to the SRL07 tab, look up ERCT in column B, and scroll across to column U to find that the eGRID subregion annual CO₂ total output emission rate for ERCT is 1,252.57 lb/MWh. This will be the emission factor used for electricity generation.

For January, applying Equation (5) yields:

\[
PE_{monthX,locY} = (30,449 \text{ kWh} / 1,000) \times (1,252.57 \text{ lb/MWh} / 2,205 \text{ lbs per metric ton}) = 17.3 \text{ metric tons CO₂}
\]

Repeating this calculation for each month yields:

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission factor (lb/MWh)</td>
<td>1,252.57</td>
</tr>
<tr>
<td>Baseline emissions for month (metric tons CO₂)</td>
<td>17.3</td>
<td>16.0</td>
<td>15.8</td>
<td>17.3</td>
<td>19.7</td>
<td>21.3</td>
<td>25.5</td>
<td>26.2</td>
<td>20.6</td>
<td>19.5</td>
<td>16.0</td>
<td>14.4</td>
</tr>
</tbody>
</table>
Summing across months using Equation (6) gives a total of 229.5 metric tons CO₂. Because there is only one TSE facility in this hypothetical project, 229.5 metric tons CO₂ is the total project emissions for the year.

4. Emission reductions

Applying Equation (8), and considering that leakage is assumed to be zero,

\[
ER_{\text{project}} = (BE_{\text{project}} - PE_{\text{project}}) \times (1 - LK)
\]

\[
= (2,639.1 - 229.5) \times (1 - 0)
\]

\[
= 2,409.6 \text{ metric tons CO}_2
\]

5. Uncertainty deduction

Assume that total uncertainty, when estimated and aggregated across the baseline and project scenarios, is less than 10% of \(ER_{\text{project}}\). Therefore no deduction for uncertainty is required. Equation (10) is not used and \(ER_{\text{project adjusted}}\) is the same as \(ER_{\text{project}}\).

6. Calculation of ERTs

Assume this is the first year of the project so there are no prior \(t_i\) cumulative emission reductions to subtract. \(BUF\) is set to zero since the emission reductions are irreversible. Applying Equation (11),

\[
ERT_t = \left(ER_{\text{project}_{t+1}} - ER_{\text{project}_{t-1}}\right) \times (1 - BUF)
\]

\[
= (2,409.6 - 0) \times (1 - 0)
\]

\[
= 2,409.6
\]

2,409.6 metric tons CO₂ are the ERTs projected \textit{ex ante} to be registered for the first year of the project, once verified by an approved third party verifier.
APPENDIX B: eGRID SUBREGIONS AND NERC REGIONS

The following maps show the eGRID subregions and NERC regions, respectively. See http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html.