Methodology for Quantifying Nitrous Oxide (N_2O) Emissions Reductions from Reduced Use of Nitrogen Fertilizer on Agricultural Crops

Webinar
November 15, 2012
Outline

• ACR background and N₂O emissions from corn
 – Nicholas Martin, American Carbon Registry

• EPRI support for reducing N₂O emissions from agriculture
 – Adam Diamant, Electric Power Research Institute

• Key points of the MSU/EPRI methodology
 – Phil Robertson and Neville Millar, Michigan State University

• Q&A
Webinar logistics

• To ask questions:
 – During presentation, type questions into ‘Chat’ box near bottom of your webinar pane. Please include name and organization.
 – Or ‘Raise Hand’ (in vertical bar at left of your webinar pane) to hold your place in line to ask a question verbally
 – As a participant, your microphone will be muted until the organizers un-mute you

• Q&A period at end: we will direct written questions to appropriate person, and call on anyone with hand raised

• Webinar will be recorded and posted shortly to www.americancarbonregistry.org
Winrock International Institute for Agricultural Development

Non-profit organization that works in the U.S. and around the world to empower the disadvantaged, increase economic opportunity, and sustain natural resources

- 1985 merger of Winrock Int’l Livestock Research & Training Center, International Ag Development Service, and Ag Development Council
- Rockefeller family tradition of agricultural research and extension, yield improvement, global food security
- Seeking ways to connect farmers and ranchers to new markets, enhance competitiveness, maintain/increase yields
American Carbon Registry

- First U.S. voluntary carbon registry
 - 37.5 MMT CO$_2$e verified carbon reductions since 1996
 - Non-profit organization
- Registry roles:
 - Develop and approve carbon protocols
 - Review and register projects
 - Oversee independent verification
 - Transparently track transactions and retirements
 - Support California compliance market, both as OPR and with new protocols
- 2011: 2.9 million ERTs sold, retired or contracted at average price of $5.51/tCO2e (range $1-14)
- Most widely used forest carbon standard in North America in 2011 (2012 State of the Forest Carbon Market report)
ACR focus on agricultural GHG mitigation

- Crop agriculture:
 - N$_2$O emission reductions through changes in fertilizer management
 - N$_2$O emission reductions through fertilizer rate reduction
 - Voluntary emission reductions in CA and Midsouth rice
 - Afforestation/reforestation of degraded lands

- Livestock and grazing lands:
 - ARB Compliance Offset Protocol – Livestock Biogas
 - Grazing Land and Livestock Management modular methodology
 - BIGGS: Carbon Intensity of Fed Cattle, Dairy Carbon Intensity, Reduced Age at Harvest
 - Compost Additions to Grazed Rangelands
 - Panda Standard - Revegetation of Degraded Grasslands in China
Methane and N\textsubscript{2}O emissions from U.S. agriculture (MMT CO\textsubscript{2}e, 2010)

- Agriculture = 428 MMT CO\textsubscript{2}e or 6.3% of US GHG emissions
- Leading sources are N\textsubscript{2}O from fertilizer and methane from livestock
N$_2$O from fertilizer

- Annual emissions of 208 MMTCO$_2$e – half of agriculture total, and >3% of US total
- Corn is among most intensive fertilizer users
- 80% of corn for grain is grown in North Central Region
- Potential to increase competitiveness for farmers, achieve GHG reductions at reduced cost, mitigate climate change and improve water quality
N$_2$O emissions from corn

Figure 8. Estimated cumulative county-level annual emissions from corn fields for anhydrous ammonia fertilizer
Why two fertilizer methodologies?

- Both based on strong science, vetted via public consultation and peer review
- Both account for and deduct for uncertainty to ensure conservative crediting
- MSU initially limited to rate reduction on corn in NCR (though designed to expand), but far simpler to apply
- DNDC methodology applies to any practice, any crop and region for which DNDC cal/val meets criteria
- Useful for different project types
- Useful input to CARB compliance protocol
 - ACR MSU/EPRI methodology generally similar to CAR *Nitrogen Management Project Protocol*
 - ACR DNDC methodology broader and applicable in CA
EPRI’s Engagement in Developing GHG Offsets by Reducing Nitrous Oxide (N$_2$O) Emissions in Crop Production

Adam Diamant
EPRI Energy and Environmental Analysis Program

American Carbon Registry Webcast
November 15, 2012
• EPRI is a non-profit “501(c)(3)” scientific research consortium founded in 1973 to perform objective research and development relating to the generation, delivery and use of electricity for the benefit of the public.

• EPRI has **450+ participants in more than 40 countries** around the world.

• In the U.S., EPRI participants generate **more than 90% of electricity delivered**.

• **Principal locations** — Palo Alto, CA, Charlotte, NC and Knoxville, TN
1. **Development of New Types of Offsets**
 - Identify promising new offset “technologies”
 - Facilitate development of new offset methodologies (e.g., N₂O Offsets)

2. **Offsets Education & Communication**
 - Hosted 13 offsets policy workshops since 2008 (e.g., Offset Credit Stacking, November 9, 2012)
 - Ongoing monitoring and reporting on the operation of offsets programs around the world.

3. **Quantitative Analysis of Offsets**
 - Examine the role of offsets in proposed federal legislation.
 - Analyze land-use competition, and interactions between biofuels, agricultural production and forest carbon sequestration.
 - Analyze potential “sectoral” offsets (e.g., China electric sector; REDD)
 - Reassess potential domestic & international offset supplies
Benefits of \(\text{N}_2\text{O} \) Emissions Reductions in Agricultural Production

- Reducing N fertilizer application in crop production can reduce \(\text{N}_2\text{O} \) emissions, particularly in NCR corn.
- \(\text{N}_2\text{O} \) reductions are **permanent** and there is no saturation.
- \(\text{N}_2\text{O} \) reductions do not cause leakage.
- \(\text{N}_2\text{O} \) reductions can be implemented across a wide range of crops and geographic areas in the U.S. and abroad. **Initial focus on corn production in the NCR.**
- \(\text{N}_2\text{O} \) reductions can be achieved at **low cost.**
- \(\text{N}_2\text{O} \) reductions in crop production provide ancillary co-benefit of **improved water quality.**
EPRI’s Partnership with Michigan State University (MSU)

- MSU has **unique, critical technical capabilities** for understanding N$_2$O flux in crop production, particularly NCR Corn.

- MSU is one of only several U.S. institutions capable of measuring N$_2$O “flux” in field samples. This was a critical element of this project.

- MSU has developed **key field testing infrastructure** that made it possible to leverage existing relationships with farmers to facilitate field testing.

- Agronomic results developed in MI often can be generalized more broadly across crop types, soils and climatic regimes of the larger NCR.

Phase 1 N$_2$O Offset Project (2006-2009)
Scientific Research

Developing GHG Emissions Offsets by Reducing Nitrous Oxide (N$_2$O) Emissions in Agricultural Crop Production

- Evaluated technical potential and economic cost to offset GHG emissions by reducing N$_2$O emissions in crop production.
- Conducted field testing that confirmed N$_2$O emissions can be reduced by lowering N input with no reduction in crop yield.
- Developed quantitative models to predict the relationship between N$_2$O flux and crop yields.
- Conducted socio-economic analysis to identify factors that may promote or inhibit farmer acceptance of this approach.
- Published key findings and a proposed new N$_2$O offsets methodology in peer-reviewed scientific literature.

Row crop ecosystems, such as this corn crop in the United States, contribute about 50% of anthropogenic N$_2$O emissions.
Phase 2 N\textsubscript{2}O Offset Project (2010-12)
Methodology Development

Developing GHG Emissions Offsets by Reducing Nitrous Oxide (N\textsubscript{2}O) Emissions in Agricultural Crop Production

- **Validated MSU-EPRI N\textsubscript{2}O Offsets Methodology** for use in multiple existing high-quality GHG offsets standards and programs, including the American Carbon Registry (ACR)

- **On-Farm Demonstration Project** – Developed and implemented a pilot N\textsubscript{2}O offsets demonstration project on a working farm.

N\textsubscript{2}O offset projects on agricultural lands could be an important component of efforts to reduce GHG emissions.
EPRI N$_2$O Project Participants

- **EPRI Participants**
 - Investor Owned Utilities (8)
 - Cooperatives (3)
 - Public power (2)

- **R&D Organizations**
 - EPRI
 - Michigan State University (MSU)

- **Methodology Validators**
 - Environmental Services Inc.
 - Det Norske Veritas (DNV)

- **Offset Standards**
 - American Carbon Registry (ACR)
 - Climate Action Reserve (CAR)
 - Verified Carbon Standard (VCS)

Row crop ecosystems, such as corn grown in the U.S., contribute about 50% of global anthropogenic N$_2$O emissions. These emissions can be lowered by reducing the amount of Nitrogen fertilizer used in crop production.
Status of MSU-EPRI N₂O Offsets Protocol

- American Carbon Registry (ACR) Methodology for Quantifying Nitrous Oxide (N₂O) Emissions Reductions from Reduced Use of Nitrogen Fertilizer on Agricultural Lands v.1 (Approved July 2012)

- Climate Action Reserve (CAR) Nitrogen Management Project Protocol (Approved June 2012)
 - Incorporates MSU-EPRI “Tier 2” N₂O emissions quantification & other features

- Verified Carbon Standard (VCS)
 - Completed Double Approval
 - Final approval expected Q4, 2012
Thank You

Adam Diamant
Electric Power Research Institute
Technical Executive
phone: 510-260-9105
e-mail: adiamant@epri.com

Dr. Phil Robertson
Michigan State University
Hickory Corners, MI 49060
phone: (269) 671-2267
e-mail: robertson@kbs.msu.edu

Dr. Neville Millar
Michigan State University
Hickory Corners, MI 49060
phone: (269) 671-2534
e-mail: millarn@msu.edu

Dr. Peter Grace
Professor of Global Change
Queensland University of Technology
Brisbane, Queensland
e-mail: pr.grace@qut.edu.au
Principal authors:
Neville Millar
G. Philip Robertson
Adam Diamant

Collaborators:
Ronald J. Gehl, Peter R. Grace, John P. Hoben

Thanks to:
Suzanne Sippel, Iurii Shcherbak
Protocol based on Peer Reviewed Science

Offsets Protocol

Field Research

Modeling
Guiding Principles

PROTOCOL

- Robust science
- High environmental integrity
- Transparent
- Non-prescriptive

PROJECT

- Low effort and cost
- Simple to verify
- Quick adoption potential
- Widely applicable

In short, easy to use and verify
Benefits

Environmental
- Reduction in agricultural GHG footprint
- Reduction in reactive N in environment

Financial
- Reduced farm (fertilizer) costs
- No productivity penalty
- Financial reward (carbon market)
- Delivers sought-after offset credits
Eligibility Requirements (1 of 3)

Farmers who use external sources of nitrogen

Fertilizer Type

- Synthetic N (e.g. urea, anhydrous ammonia)
- Organic N (e.g. manure, compost)

Fertilizer Management

- Applied any time during cropping cycle
- Must adhere to Best Management Practices for region
Nitrous Oxide Emissions

- **Direct**: Emitted on-site
- **Indirect**: Emitted off-site

Includes N$_2$O produced downstream and downwind in waters and soils as a result of nitrate (NO$_3^-$) leaching and ammonia (NH$_3$) volatilization
Geographic Location / Categories

Category 1: Projects located in US *North Central Region (NCR)* (ND, SD, NE, KS, MN, IA, MO, WI, IL, MI, IN, OH)
- Corn in row-crop systems
- MSU-EPRI Tier 2 method (non-linear)

Category 2: Projects located *worldwide*
- Tier 1 – IPCC ‘global’ method (1% of N inputs, linear)
- Approval based on peer-reviewed data

Category 3: Projects located *worldwide*
- Tier 2 - new project-specific method (linear or non-linear)
- Approval based on peer-reviewed data
Tier 2

\[N_2O \text{ emissions} = 1.47 \times \exp(0.0082 \times \text{Fertilizer N rate}) \]

Tier 1

\[N_2O \text{ emissions} = 1.47 + (0.01 \times \text{Fertilizer N rate}) \]

Protocol Accounting

Category 1 vs. Category 2 Method

- **Category 1** (Non-linear)
- **Category 2** (Linear)

Graph

- **N\text{_rate reduction} 40 \text{ kg N}**

Protocol

- Millar et al. 2010 MASGC, Hoben et al. 2011 GCB
Provides Flexibility for Farmers

Farmers have multiple routes to reduce N rate

- More accurate estimates of N need (e.g. MRTN)
- Timing of N application (e.g. spring vs. fall)
- Source of fertilizer (e.g. formulation)
- Placement of fertilizer (e.g. precision agriculture)
- Cover crops use

N rate reduction is the integrated result
Key Issues

• Baseline Determination
• Proving Additionality
• Dealing with Permanence and Reversal
• Proving No Project Leakage
• Dealing with Uncertainty
Baseline N rate determined from:

Site Specific Records - Approach 1 (*worldwide*)
- N fertilizer purchase and application rate data

County Level Records - Approach 2 (*U.S. only*)
- Yield data and equations based on yield goal estimates

Approach 1 preferred due to:
- Finer spatial resolution and more potential offsets

Approach 2 can be used if:
- Records are not available or verifiable for Approach 1
Proving Additionality

Additionality assessed using:

- Performance Benchmark (U.S. only)
- ACR ‘Three-Prong Test’ (worldwide outside U.S.)

Performance Benchmark

Regulatory Surplus

No existing laws or other regulatory frameworks that require farmer to reduce N fertilizer rate below BAU

Performance Standard

Farmers must reduce N fertilizer rate to below a threshold that represents the BAU rate
Dealing with Permanence and Reversal

N_2O emissions avoided are:

- Immediate
- Irreversible
- Permanent

There are no permanence or reversal concerns
• For project eligibility land must have been maintained in crop production for 5+ years prior to implementing project

• In the absence of the project, continuation of crop production using BAU management practices is the most realistic and credible baseline scenario

• No crop yield reductions are expected due to project activity, so there is little likelihood for Market leakage or Activity shifting
Calculators are available for better economic estimate

No yield reductions, therefore no yield compensation
No additional N use, therefore no added N$_2$O emissions

ISU Agronomy Extension http://extension.agron.iastate.edu/soilfertility/nrate.aspx
Discounting for Uncertainty (1 of 2)

\[\text{N}_2\text{O}_{PR}, t = \left((\text{N}_2\text{O}_B \text{ total, } t - \text{N}_2\text{O}_P \text{ total, } t) \times \text{AP} \right) \times [1-\text{UNC}] \]

- Greater uncertainty around N\textsubscript{2}O emissions at higher N rates
- This uncertainty can be quantified using statistical techniques
• The uncertainty percentage is related to a set of IPCC conservativeness factors

• Based on these factors the uncertainty deduction can be applied to discount the number of N$_2$O offset credits

<table>
<thead>
<tr>
<th>Uncertainty range at 95% confidence level of project emissions reductions</th>
<th>Conservativeness factor</th>
<th>Uncertainty deduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< \pm 15%$</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>$> \pm 15% \leq \pm 30%$</td>
<td>0.943</td>
<td>0.057</td>
</tr>
<tr>
<td>$> \pm 30% \leq \pm 50%$</td>
<td>0.893</td>
<td>0.107</td>
</tr>
<tr>
<td>$> \pm 50% \leq \pm 100%$</td>
<td>0.836</td>
<td>0.164</td>
</tr>
</tbody>
</table>
Key Insights

MSU-EPRI protocol

- High environmental integrity
- Generates fungible offset credits
- Scientifically robust
- Non-prescriptive and flexible
- Transparent and straightforward to understand and use
- Suitable for project aggregation
- Potential for credit stacking
- Potential for adaption and extension
Thank you for listening

Neville Millar
W.K. Kellogg Biological Station
Michigan State University
Hickory Corners, MI 49060
Phone: (269) 671-2534
millarn@msu.edu

G. Philip Robertson
W.K. Kellogg Biological Station and
Dept. of Plant, Soil and Microbial
Sciences Michigan State University
Hickory Corners, MI 49060
Phone: (269) 671-2267
robertson@kbs.msu.edu
Questions?

Methodology Authors and Contributors:

Neville Millar, Michigan State University
Phil Robertson, Michigan State University
Adam Diamant, Electric Power Research Institute

Nicholas Martin, American Carbon Registry
Further information

Nicholas Martin
American Carbon Registry
nmartin@winrock.org

Neville Millar
Michigan State University
millarn@msu.edu

G. Philip Robertson
Michigan State University
robertson@kbs.msu.edu

Adam Diamant
Electric Power Research Institute
adiamant@epri.com